HIGH TEMPERATURE THERMAL PROPERTIES OF MAGNESIUM SILICIDE INVESTIGATED BY MOLECULAR DYNAMICS SIMULATION

Meena Rittiruam^{a,b,*}, Keerati Maneesai^c, Korakot Matarat^{a,d}, Athorn Vora-ud^b, Sirakan Yokhasing^{a,b}

^aSimulation Research Laboratory, Center of Excellence on Alternative Energy, Research and Development Institution, Sakon Nakhon Rajabhat University,

Sakon Nakhon, 47000, Thailand

^bProgram of Physics, Faculty of Science and Technology, Sakon Nakhon Rajabhat University,

Sakon Nakhon, 47000, Thailand

^cFaculty of Science and Engineering, Kasetsart University Chalermphrakiat Sakonnakhon Province Campus, Sakon Nakhon, 47000, Thailand

^dProgram of Computer, Faculty of Science and Technology, Sakon Nakhon Rajabhat University, Sakon Nakhon, 47000, Thailand

Received 15 January 2017; Revised 15 May 2017; Accepted 5 June 2017

ABSTRACT

The thermal properties are important for processing conversation heat energy to electricity of Magnesium Silicide (Mg₂Si) thermoelectric material. This work, we investigate the thermal properties of Mg₂Si by using molecular dynamics (MD) simulation. The cluster atomic model was designed by using Mg₅₁₂Si₂₅₆ based on CaF₂ structure for MD calculation. The Morse-type and Busing-Ida type were performed for inter-atomic interaction based on MXDORTO. Our calculated results composed lattice parameter, compressibility, linear thermal expansion coefficient, energy, heat capacity, and thermal conductivity, respectively, they present at versus temperature 300 – 1200 K. In addition, the heat flux auto-correlation and thermal conductivity depend on time correlation was presented. The calculated imply that the thermal conductivity of Mg₂Si become to ~1 W m⁻¹ K⁻¹ at high temperature.

KEYWORDS: Thermal conductivity; Green-Kubo relation; Heat capacity; MXDORTO

Corresponding authors; e-mail: meena@snru.ac.th ,Tel&Fax: +664-274-4319

INTRODUCTION

Magnesium silicide is a non-toxicity thermoelectric (TE) material [1]. General, it exhibits n-type TE material. Whereas, the Bi-, Sb- and Aldoping lead to p-type TE material [2]. In addition, the Mg₂Si is intermediated thermoelectric power generator at high temperature applications with maximum operating temperature of around 600 K [3]. So far, the structural behaviors of Mg₂Si have been investigated by energy dispersive synchrotron X-ray diffraction. It was found that, the crystal structure of Mg₂Si is anti-fluorite (CaF₂) type (Pearson symbol; cF12, space group symbol; Fm3m and space group number; 225) with lattice parameter of 0.635 nm and density of 1.90 g cm⁻³ [4-6]. As well know, the Mg₂Si exhibits low thermal conductivity at room to middle temperature [7–9]. In addition, the experimental shows the heat capacity at constant volume is 67.6 J mol⁻¹ K⁻¹ [10], heat capacity at constant pressure is 67.9 J mol⁻¹ K⁻¹ [10], and thermal conductivity 5.2 - 10.5 W m⁻¹ K⁻¹ [11, 12] at room temperature, respectively. However, the thermal properties such as lattice parameter, compressibility, linear thermal expansion coefficient, internal energy, heat capacity, and thermal conductivity at high temperature is a few reported. This work, we investigated the thermal properties of Mg₂Si. This presents are help to understand behavior of TE as well as future applications at high temperature.

MATERIALS AND METHODS

Computational details

The MD calculation on thermal properties of Mg_2Si was performed using the system of 768 ions that composed Mg (cations) 512 ions, and Si

Calculation		L, B, α_{lin}		$C_{\rm P}$, $C_{\rm V}$, $C_{\rm d}$		К			
System	n								
-Particles		768 Particles (512 cations and 256 anions)							
			Mg = 512, Si = 256						
-Structure			CaF ₂ crystal structure						
Contr	ol								
-Temperature		Scaling method		Scaling method		Nose method [14]			
-Pressure		Scaling method		No control method		Andersen method [15]			
Number of steps		100,000		100,000		100,000			
Table 2	2 The inter-a	tomic pot	ential parame	ter for Mg ₂ S	Si				
Ions	z	а	b	С		D_{ij}	eta_{ij}	r_{ij}^*	
Mg	1.2	1.926	0.11405	20	Pair	15	2.25	2.369	
Si	-2.4	1.659	0.11405	0	Mg–Si				

Table 1 The conditions for MD calculation of Mg₂Si

(anions) 256 ions in dimension $4 \times 4 \times 4$ unit cells. The cluster atom model was initially arranged in the CaF₂ type crystal structure as shown in Fig. 1. The calculation conditions of the lattice parameter (*L*), compressibility (*B*), linear thermal expansion coefficient (α_{lin}), heat capacity at constant pressure (C_p), heat capacity at constant volume (C_v), heat capacity of lattice dilatational terms (C_d), and thermal conductivity (κ) as shown in Table 1. This calculation was performed by MXDORTO [13].

The Morse-type [16] and Busing-Ida type [17] potential function were employed for inter-atomic interaction, as show in equation. (1).

$$U_{ij}(r_{ij}) = \frac{z_i z_j e^2}{r_{ij}} + f_0(b_i + b_j) \exp\left(\frac{a_i + a_j - r_{ij}}{b_i + b_j}\right) - \frac{c_i c_j}{r_{ij}^6} + D_{ij} \left\{ \exp\left[-2\beta_{ij}(r_{ij} - r_{ij}^*)\right] - 2\exp\left[-\beta_{ij}(r_{ij} - r_{ij}^*)\right] \right\}$$
(1)

Fig. 1 The $Mg_{512}Si_{256}$ cluster atoms model for $Mg_2Si 4 \times 4 \times 4$ unit cells.

Here, f_0 is repulsion between atoms in vacuum (4.186), z_i and z_j are the effective partial electronic charges on the i^{th} and j^{th} ions, respectively. r_{ij} is the inter-atomic distance, r_{ij}^* is the bond length of the cation-anion pair in vacuum. The parameters of a, b and c are the characteristic parameters depending on the ion species. The potential function, D_{ij} and β_{ij} describe the depth and shape of this potential, respectively. The first term describes the Coulomb interactions and the second term denotes core repulsions. The third term is a Morsetype potential, and applied only to cation-anion pairs. The values of the inter-atomic potential parameters used in the present study are given in Table 2.

The calculations were performed on cluster computer, OS-Rocks Clusters 6.1.1 (based on Centos 6.5) 64 bit, total 6 cores (Intel ® Core(TM) 2 Quad CPU Q9500 @ 2.83GHz 2.83 GHz) and total 8 GB of RAM.

RESULTS AND DISCUSSION

The *L* of Mg₂Si carried out by MD calculation at pressure 0.1 MPa and temperature 300 - 1200 K as shown in Fig. 2. Our calculated *L* with value of $a = b = c = 6.3516\pm0.0004$ Å at room temperature show good agreement with the experimental data [6, 18, 19]. It was note that, the structure of Mg₂Si was expanded with increasing temperature. Our calculated of *L* show a few error

at high temperature and denote that high accurate of MD. In addition, *L* was adopted to investigate the *B* and α_{lin} following by equations. (2) and (3);

$$B = \frac{3}{L(P_0)} \left(\frac{\partial L(P)}{\partial P} \right)_{\rm T}$$
(2)

$$\alpha_{\rm lin} = \frac{1}{L(T_0)} \left(\frac{L(T) - L(T_0)}{T - T_0} \right)_{\rm P}$$
(3)

Here, L(P), P_0 , L(T), and T_0 are L at pressure P(Pa), atmospheric pressure, the L at T(K) and room temperature, respectively. The calculated of B and α_{lin} as show in Fig. 3.

Our calculated of *B* exhibits value 6.2 MPa⁻¹ at 300 K slowly increase to 7.65 MPa⁻¹ at 1200 K. Meanwhile, the α_{lin} exhibits 8.6 μ K⁻¹ at 350 K increase like exponential function to 10.48 μ K⁻¹ at 1200 K. These results help to understand and confirm that the structure of Mg₂Si has expanded as exponential function and affect to the heat capacity and thermal conductivity.

Fig. 2 Calculated of lattice parameters for Mg₂Si at various temperatures.

Fig. 3 Calculated of compressibility and linear thermal expansion coefficient for Mg_2Si at various temperatures.

Fig. 4 Calculated of internal energy of Mg₂Si at various temperatures.

The kinetic energy (*K*), potential energy (*U*) and total energy (*E*) were directly carried out by MD calculation can evaluate by equations. (4) – (6);

$$E = U + K \tag{4}$$

$$U = U_{\text{Coulomb}} + U_{\text{short}}$$

= $U_{\text{Coulomb}} + U_{\text{vdW}} + U_{\text{srr}} + U_{\text{Morse}}$ (5)

$$K = \frac{1}{3Nk_{\rm B}} \sum_{i} m_i v_i^2 \tag{6}$$

Here, U_{Coulomb} , U_{vdW} , U_{srr} , U_{Morse} N, k_{B} , m_i and v_i are Coulomb potential, van der Waals attraction, short range repulsion, Morse potential energy, number of atom, Boltzmann constant, mass of atom *i* and, velocity of atom *i*, respectively, Our calculated of internal energy for Mg₂Si as shown in Fig. 4.

The $C_{\rm p}$ can evaluated by $C_{\rm v} + C_{\rm d}$; where $C_{\rm v}$ regards to gradient of the total internal energy and $C_{\rm d}$ can evaluated by using *L*, *B*, and $\alpha_{\rm lin}$ as following in equations. (7) – (9);

$$C_{\rm P} = C_{\rm V} + C_{\rm d} \tag{7}$$

$$C_{\rm V} = \left(\frac{\partial E({\rm T})}{\partial T}\right)_{\rm V} \tag{8}$$

$$C_{\rm d} = \frac{(3\alpha_{\rm lin})^2 V_m({\rm T})}{B} T \tag{9}$$

Fig. 5 Calculated of heat capacity of Mg₂Si at various temperature.

Here $V_m(T)$ is the molar volume at temperature T(K). Our calculated of C_d show a few value about of 1.4 J mol⁻¹ K⁻¹ at 300 K increased to 6.1 J mol⁻¹ K⁻¹ at 1200 K. It denote that perturbation term of lattice vibration. Our calculated of C_V show agree with experimental data of Wang [10] at 350 – 500 K. It slightly increases above 500 K. The C_P and C_V were began constant above 1100 K thus agree with Dulong-Pertit law. Our calculated of C_P show agreement values with experimental data at 300 – 450 K, while more than experimental data above 450 K [19].

The lattice thermal conductivity can be investigated by using the Green-Kubo relation [20]. It obtained from time integral of heat flux auto-correlation function (ACF) of the energy current as following by equation. (10) - (12);

$$\kappa_{\text{lat}} = \frac{R}{3N_{\text{A}}T^2} [L(\text{T})]^3 \int_0^\infty \langle S(t)S(0) \rangle dt \qquad (10)$$

$$S(t) = \frac{1}{[L(T)]^3} \left[\sum_{j} E_{j} v_{j} + \frac{1}{2} \sum_{j} \sum_{i \neq j} r_{ij} (f_{ij} v_{j}) \right]$$
(11)

$$E_{j} = \left\{ \frac{1}{2} m_{j} v_{j}^{2} + \frac{1}{2} \sum_{i \neq j} U_{ij}(r_{ij}) \right\} - E_{av}$$
(12)

where R, N_A , S(t), t, m_j , v_j , f_{ij} , E_j and E_{av} are the gas constants = 8.314 J K⁻¹ mol⁻¹, Avogadro constant, the heat flux form auto-correlation function (ACF), time correlation, mass of atom j, velocity of atom j, force between atom i and j; energy of atom j and average energy of the system, respectively.

Fig. 6 The calculated of auto-correlation function for Mg₂Si at versus time correlation.

The expectation of auto-correlation function, $\langle S(t)S(0) \rangle$, and calculated of κ_{lat} for Mg₂Si as shown in Fig. 6 and 7. The ACF take approximately 4.0 ps and decay to zero, while the κ_{lat} has value about 8.48 W m⁻¹ K⁻¹ at 4.0 ps, which occurred at at 303.9 K. It should be that, the ACF and κ_{lat} has been quick decay to zero where increasing temperature. In addition, the ACF is direct variation of temperature while κ_{lat} opposite.

The thermal conductivity of Mg₂Si at versus temperature as shown in Fig. 8. Our calculated of κ_{lat} exhibits 8.48 W m⁻¹ K⁻¹ at 303.9 K decreased to 1.52 W m⁻¹ K⁻¹ at 1227 K. We using the calculation result of κ_{lat} compared with literature data thus composed many method such as, solid state reaction (SSR) [11, 12, 21, 22], spark plasma sintering (SPS) [23, 24], plasma activated sintering (PAS) [25, 26] and fieldactivated and pressure-assisted synthesis (FAPAS) [27].

All literatures exhibit the total thermal conductivity which can evaluate by $\kappa = \kappa_{lat} + \kappa_e$, here κ_e is electron thermal conductivity term. While, the MD calculation carried out the lattice thermal conductivity which

less than experimental data [11, 21, 23 – 27] and more than of experimental data [12, 22]. It indicate that good TE property, because of good TE materials are required low thermal conductivity [1, 3]. Moreover, we present the κ_{lat} above 900 K shown slightly decrease to 1 W m⁻¹ K⁻¹. Our calculated of thermal conductivity can be predicted by equation (13);

$$\kappa_{\rm lat} [{\rm W} \,{\rm m}^{-1} \,{\rm K}^{-1}]$$
 (13)

$$=\kappa_0 + 23.8 \exp[-0.004T(K)]; \kappa_0 = 1.53$$

Fig. 7 The calculated of lattice thermal conductivity for Mg_2Si at versus time correlation.

Fig. 8 The calculated of lattice thermal conductivity together with literature data at various temperature.

CONCLUSION

The thermal properties composed *L*, *B*, α_{lin} , C_P , C_V , C_d , ACF, and κ_{lat} of Mg₂Si has been successfully investigated by MD simulation. The *L*, *B* and α_{lin} indicated that structure of Mg₂Si is expansion and contraction as exponential function as well as contribute to C_P , C_V , C_d , and κ_{lat} also change as exponential function. Our calculated of κ_{lat} estimated that the κ_{lat} decreased to 1 W m⁻¹ K⁻¹ at high temperature.

ACKNOWLEDGEMENTS

This work was supported by Thailand Research Fund (TRF) through the Royal Golden Jubilee (RGJ) Ph.D. Program (Grant No. PHD/0195/2558).

REFERENCES

- S. Fiameni, S. Battiston, S. Boldrini, A. Famengo, F. Agresti, S. Barison, M. Fabrizio, Synthesis and characterization of Bi-doped Mg₂Si thermoelectric materials.
 J. Solid. State. Chem. 193 (2012) 142–146.
- [2] D.M. Rowe, G. Min, Multiple potential barriers as a possible mechanism to increase the Seebeck coefficient and electrical power factor. 13th Int. Conf. on thermoelectrics, New York. 30 August – 1 September 1994, 339–342.
- [3] R. Saravanana, M.C. Robert, Local structure of the thermoelectric material Mg₂Si using XRD, J. Alloy. Compd. 479 (2009) 26–31.
- [4] H.K. Mao, J. Xu, P.M. Bell, Calibration of the ruby pressure gauge to 800 kbar under quasihydrostatic conditions, J. Geophys. Res. 91 (1986) 4673–4676.
- [5] J. Hao, B. Zou, P.W. Zhu, C.X. Gao, Y.W. Li, D. Liu, K. Wang, W.W. Lei, Q.L. Cui, G.T. Zou, In situ X-ray observation of phase transitions in under high pressure, Solid. State. Commun. 149 (2009) 689–692.
- [6] E.N. Nikitin, A.I. Zaslavskii, A.K. Kusnetsov, V.K. Zaitsev, E.N Tkalenko, A study of the phase diagram for the Mg₂Si-Mg₂Sn system and the properties of certain of its solid solutions, J. Inorganic Mater. 4 (1968) 1656–1659.

- [7] M. Umemoto, Y. Shirai, K. Tsuchiya, The 4th Pacific Rim Int. In Conf. on Advanced Materials and Processing (PRICM4),
 S. Handa and Z. Zhong (Eds), SW Nam and RN Wright, (Jpn. Inst. Met. 2001), 2001.
- [8] Y. Noda, H. Kon, Y. Furukawa, N. Otsuka, I. A. Nishida, K. Masumoto, Preparation and Thermoelectric Properties of $Mg_2Si_{1-x}Ge_x$ (x = 0.0~ 0.4) Solid Solution Semiconductors, Mater. Trans. 33 (1992) 845–850.
- [9] E.N. Nikitin, V.G. Bazanov, V.I. Tarasov, Thermoelectric properties of solid solutions Mg₂Si-Mg₂Sn, Sov. Phys. Solid. State. 3 (1962) 2648–2651.
- [10] H. Wang, H. Jin, W. Chu, Y. Guo, Thermodynamic properties of Mg₂Si and Mg₂Ge investigated by first principles method, J. Alloy. Compd. 499 (2010) 68–74.
- [11] J. Tani, H. Kido, Thermoelectric properties of Bi-doped Mg₂Si semiconductors, Phys. B. Cond. Matter. 364 (2005) 218–224.
- [12] H.J. Lee, Y.R. Cho, I.H. Kim, Synthesis of thermoelectric Mg₂Si by a solid state reaction, J. Ceram. Process. Res. 12(1) (2011) 16–20.
- [13] K. Kawamura, K. Hirako, Material design using personal computer, Shokabo, Tokyo, 1994.
- [14] S. Nose, A unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys. 81 (1984) 511–519.
- [15] H.C. Andersen, Molecular dynamics simulations at constant pressure and/or temperature, J. Chem. Phys. 72 (1980) 2384–2393.
- [16] P.M. Morse, Diatomic molecules according to the wave mechanics. II. Vibrational levels, Phys. Rev. 34 (1929) 57.
- [17] Y. Ida, Interionic repulsive force and compressibility of ions, Phys. Earth Planet. Interiors. 13 (1976) 97–104.
- [18] K.A. Bol'shakov, N.A. Bul'onkov, L.N. Rastorguev, M.S. Tairlin, Translated from Zhurnal Neorgranicheskoi. Khimii, Russ. J. Inorg. Chem. 8(12) (1963) 1418–1421.
- [19] D. Chen, F. Peng, B. Yu, Periodic DFT study on the structural and thermal properties of bulk anti-fluorite magnesium silicide, Acta Metall. Sin. (Engl. Lett.). 24(4) (2011) 271–280.
- [20] R. Zwanzig, Time-correlation functions and transport coefficients in statistical mechanics, Ann. Rev. Phys. Chem. 16 (1965) 67–102.
- [21] J.Y. Jung, I.H. Kim, Synthesis of thermoelectric Mg₂Si by mechanical alloying, J. Kor. Phys. Soc. 57(4) (2010) 1005–1009.

- [22] S.W. You, I. Kim, Solid-state synthesis and thermoelectric properties of Bi-doped Mg₂Si compounds, Curr. Appl. Phys. 11 (2011) S392–S395.
- [23] K. Kim, S. Choi, W. Seo, Synthesis characteristics and thermoelectric properties of the rare-earth-doped Mg₂Si system,
 J. Kor. Phys. Soc. 57(4) (2010) 1072–1076.
- [24] X. Hu, D. Mayson, M. Barnett, Synthesis of Mg₂Si for thermoelectric applications using magnesium alloy and spark plasma sintering, J. Alloy. Compd. 589 (2014) 485–490.
- [25] T. Sakamoto, T. Iida, N. Fukushima, Y. Honda, M. Tada, Y. Taguchi, Y. Mito, H. Taguchi, Y. Takanashi, Thermoelectric properties and power generation characteristics of sintered undoped n-type Mg₂Si, Thin. Solid. Films. 519 (2011) 8528–8531.
- [26] Y. Hayatsu, T. Iida, T. Sakamoto,
 S. Kurosaki, K. Nishio, Y. Kogo,
 Y. Takanashi, Fabrication of large sintered pellets of Sb-doped n-type Mg₂Si using a plasma activated sintering method,
 J. Sol. State Chem. 193 (2012) 161–165.
- [27] Q.S. Meng, W.H. Fana, R.X. Chena and Z.A. Munir, Thermoelectric properties of Sc-and Y-doped Mg₂Si prepared by fieldactivated and pressure-assisted reactive sintering, J. Alloy. Compd. 509 (2011) 7922–7926.